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Abstract

In this survey paper we introduce the reader to the notion of the fractional Fourier
transform, which may be considered as a fractional power of the classical Fourier trans-
form. It has been intensely studied during the last decade, an attention it may have
partially gained because of the vivid interest in time-frequency analysis methods of
signal processing, like wavelets. Like the complex exponentials are the basic functions
in Fourier analysis, the chirps (signals sweeping through all frequencies in a certain
interval) are the building blocks in the fractional Fourier analysis. Part of its roots can
be found in optics where the fractional Fourier transform can be physically realized.
We give an introduction to the definition, the properties and computational aspects
of both the continuous and discrete fractional Fourier transforms. We include some
examples of applications and some possible generalizations.
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1 Introduction

The idea of fractional powers of the Fourier operator appears in the mathematical literature
as early as 1929 [63, 15, 23]. It has been rediscovered in quantum mechanics [35, 30], optics
[32, 39, 2] and signal processing [3]. The boom in publications started in the early years of
the 1990’s and it is still going on. A recent state of the art can be found in [40].

In fact [40] is a comprehensive survey of what was published up to 2001. It appeared
while we were preparing this survey, and therefore most of what we include in this paper
will also be found in a more complete and more exhaustive form in that book. We shall add
some of the more recent developments as well. It is not our intention to be exhaustive, not
in the contents of the paper and certainly not in the list of references. We see this paper as
an appetizer for those who want to learn about a new and exciting subject that has many
potential applications that are yet to be discovered.

The outline of the paper is as follows. Section 2 gives a motivating analysis of the
classical Fourier transform which prepares the reader for several possible definitions of the
fractional Fourier transform (FrFT) given in the next section. Some elementary properties
are introduced in Section 4. The Wigner distribution is a function that essentially gives the
distribution of the energy of the signal in a time-frequency plane. The effect of a FrFT can
be effectively visualized with the help of this function. This is describer in Section 5 where
we also include relations with the windowed or short time Fourier transform, with wavelets
and chirplets. The FrFT may be seen as a special case of a more general linear canonical
transform (LCT). Whereas the FrFT corresponds to a rotation of the Wigner distribution
in the time-frequency plane, the LCT will correspond to any linear transform that can be
represented by a unimodular 2×2 matrix. This is the subject of Section 6. Everything that is
explained in this section will thus also hold for the fractional Fourier transform. This includes
simplified forms, computational aspects, 2 and n-dimensional generalizations, filtering in the
transform domain, etc. A very short introduction is given to the optical interpretation of
the FrFT in Section 7. This is not essential for the development ot the theory, but it shows
how the FrFT appears naturally in an optical context. Recently, most of the transforms
that are used in signal processing have been given a fractional interpretation. Some of them
are closely related to the FrFT such as the sine, cosine and Hartley transform, others are
less connected, but can still be linked with the FrFT. Some of these are briefly discussed in
the next section. The discrete form of the FrFT for finite (periodic) signals is discussed in
Section 9. A selective set of applications is briefly mentioned in Section 10.
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2 The classical Fourier Transform

We recall some of the definitions and properties that are related to the classical continuous
Fourier transform (FT) so that we can motivate our definition of the fractional Fourier
transform (FrFT) later.

2.1 The definition

Definition 2.1 Let L be the Fréchet space of all smooth functions f (infinitely many times
differentiable) such that

γm,n(f) = sup
t∈R

|tmf (n)(t)| <∞ ∀m,n = 0, 1, 2, . . .

Then the FT operator F is defined for f ∈ L as

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωtdt. (1)

The inverse transform is also defined and is given by

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωtdω. (2)

Since we do not want to keep the different notation for time (t) and frequency (ω), we
shall use a “neutral” variable such as x or ξ to avoid confusion.

It will also be useful to introduce a notation for a variable along a rotated axis system.
Let x = x0 be the variable along the x-axis pointing to the East and ξ = x1 is the variable
along the ξ-axis pointing to the North, like for example the time and frequency variables in
the time-frequency plane. If this coordinate system is rotated over an angle α = aπ/2, a ∈ R

counter clockwise, then we denote the rotated variables as xa and ξa = xa+1 respectively.
Thus

[

xa
ξa

]

=

[

cosα sinα
− sinα cosα

] [

x
ξ

]

which we also denote as (xa, ξa) = Ra(x0, ξ0) or more generally for β = bπ/2, b ∈ R we have
(xb, ξb) = Rb−a(xa, ξa). It will always be assumed that ξa = xa+1.

Figure 1: Notational convention for the variables and rotated versions. The angle is α =
aπ/2.

PSfrag replacements

α

ξ = ξ0 = x1

x0 = x

ξa = xa+1 xa
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Thus xa and ξa = xa+1 are always orthogonal and xa+2 = ξa+1 = −xa and xa−1 = −ξa.
The notation Ra will also be used as an operator working on a function of two variables

to mean Raf(x, ξ) = f(Ra(x, ξ)) = f(xa, ξa).
It is well known [67, p.146-148] that the FT defines a homeomorphism.

Theorem 2.1 F : L → L is a homeomorphism with an inverse:

(F−1f)(x) = (Ff)(−x), f ∈ L, x ∈ R.

2.2 Interpretation in the time-frequency plane

Let f(x) be a (time) signal of the variable x = x0, so it lives on the horizontal (time) axis.
Its FT (Ff)(ξ) is a function of the variable (frequency) ξ = x1 and hence it lives on the
vertical (frequency) axis.

Thus by the FT, the representation axis is changed from a representation in the x = x0

(time) domain to a representation in the ξ = x1 (frequency) domain, which corresponds to
a counterclockwise rotation over an angle π/2 in the (x, ξ)-plane.

Because applying applying F twice leads to

(F2f)(x) = (F(Ff))(x) =
1√
2π

∫ ∞

−∞
F (ξ)e−iξxdξ = f(−x),

it is seen that
(F2f)(x) = f(−x). (3)

Therefore F2 is called the parity operator. Thus the representation axis is the reversed time
axis, i.e., the time axis rotated over an angle π.

Similarly it follows that by using subsequently (3) and (1) we get

(F3f)(ξ) = (F(F 2f))(ξ) =
1√
2π

∫ ∞

−∞
f(−x)e−iξxdx = F (−ξ).

Thus
(F3f)(ξ) = (Ff)(−ξ) = F (−ξ), (4)

which corresponds to a rotation of the representation axis over 3π/2. It will now be clear
that by another application of F , we should get another rotation over π/2, which brings us
back to the original time axis. Hence

F4(f) = f or F4 = I. (5)

Thus the FT operator corresponds to a rotation in the time-frequency plane of the axis
of representation over an angle π/2. Thus all the representations that one can obtain by
the classical FT correspond to representations on the (orthogonal) axes of (x, ξ) (i.e., time-
frequency) plane, possibly with a reversion of the orientation.

3 The fractional Fourier transform

In [40] the authors give 6 different possible definitions of the FrFT. It is probably a matter
of taste, but the more intuitive way of defining the FrFT is by generalizing this concept
of rotating over an angle that is π/2 in the classical FT situation. Like the classical FT
corresponds to a rotation in the time frequency plane over an angle α = 1π/2, the FrFT will
correspond to a rotation over an arbitrary angle α = aπ/2 with a ∈ R. This FrFT operator
shall be denoted as Fa where F1 = F corresponds to the classical FT operator.

5
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3.1 Derivation of the formulas

To arrive at a more formal definition, we can first define the FrFT on a basis for the space
L. For this basis we use a complete set of eigenvectors for the classical FT. Since F 4 =
I, the eigenvalues are all in the set {1,−i,−1, i} and thus there are only four different
eigenvalues and thus only four different eigenspaces, all infinite dimensional. Consequently,
the eigenvectors are not unique. The eigenvectors belonging to different eigenspaces will be
automatically orthogonal because F is self adjoint, but within each eigenspace, the choice
of an orthonormal system of eigenvectors can be arbitrary.

A possible choice for the eigenfunctions of the operator F that is generally agreed upon
is given by the set of normalized Hermite-Gauss functions:

φn(x) =
21/4

√
2nn!

e−x
2/2Hn(x), where Hn(x) = (−1)nex

2Dne−x
2

, D =
d

dx
,

is an Hermite polynomial of degree n. These eigenfunctions are normalized in the sense that
(2π)−1/2

∫ ∞
−∞ |φn(t)|2dt = 1. That these are eigenfunctions means that there is an eigenvalue

λn such that F(φn(t)) = λnφn(t). Since

Fφn = e−inπ/2φn, (6)

we see that the eigenvalue for φn is given by λn = e−inπ/2 = λn with λ = −i = e−iπ/2

representing a rotation over an angle π/2. Because the Hermite-Gauss functions form a
complete set in L, it suffices to define the FrFT on this set of eigenfunctions φn. This is
simple, since in view of our intuitive geometric definition, it seems natural to define the FrFT
for an angle α = aπ/2 by

Faφn = e−inaπ/2φn = λanφn = λnaφn,

with λa = e−iaπ/2 = e−iα = λa causing a rotation over an angle α. Thus the classical FT
corresponds to the FrFT F 1 and the FrFT corresponds to a fractional power of the FT
operator F .

Thus the Fourier kernel is

K1(ξ, x) =
e−iξ x√

2π
=

∞
∑

n=0

λnφn(ξ)φn(x), λn = e−i
π
2
n,

while the kernel of the FrFT is

Ka(ξ, x) =
∞

∑

n=0

λanφn(ξ)φn(x).

If we define the analysis operator Tφ, the synthesis operator T ∗
φ and the scaling operator Sλ

as

Tφ : f 7→ {cn}, cn =

∫ ∞

−∞
f(x)φn(x)dx

Sλ : {cn} 7→ {λncn}, λn = e−i
nπ
2

T ∗
φ : {dn} 7→

∞
∑

n=0

dnφn(x),

6
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then it is clear that we may write

F = T ∗
φ SλTφ and Fa = T ∗

φ SaλTφ. (7)

Note that the operator Tφ is unitary and that T ∗
φ is its adjoint.

The formula (7) gives a general procedure to define the fractional power of any operator
that has a complete set of eigenfunctions.

This definition implies that Fa can be written as an operator exponential F a = e−iαH =
e−iaπH/2 where the Hamiltonian operator H is given by H = − 1

2
(D2 + U2 + I) with D

the differentiation operator and U the multiplication or complex shift operator defined as
(Uf)(x) = ixf(x) = (FDF−1)f(x) (see [30, 35, 40]). The form of the operator H can be
readily checked by differentiating the relation

e−iαH
(

e−x
2/2Hn(x)

)

= e−inα
(

e−x
2/2Hn(x)

)

with respect to α, setting α = 0 and then using the differential equation H ′′
n(x)− 2xH ′

n(x)+
2nHn(x) = 0, or equivalently (D + 2iU)DHn = −2nHn, the expression for H follows.

From this representation, we immediately derive a number of properties for the operator
Fa.

• For the classical FT we set α = π/2, hence a = 1 and obtain F 1 = e−iπH/2 with inverse
F−1 = eiπH/2.

• For α = a = 0 we do get the identify operator: F 0 = e0 = I

• For α = π, hence a = 2 we get the parity operator F 2 = e−iπH.

• Index additivity: FaF b = e−iaπH/2e−ibπH/2 = e−i(a+b)πH/2 = Fa+b.

• As a special case we have F 1/2F1/2 = F and we call F 1/2 the square root of F . Also,
it follows that the inverse of the FrFT F a is F−a.

• Linearity: Fa[
∑

j αjfj(u)] =
∑

j αj[Fafj(u)]

• Unitary: (Fa)−1 = (Fa)∗

• Commutativity: Fa1Fa2 = Fa2Fa1

• Associativity: Fa3(Fa1Fa2) = (Fa3Fa2)Fa1

3.2 Integral representations of the fractional Fourier transform

Recall that the Hermite-Gauss functions φn are eigenfunctions of the FrFT Fα with eigen-
values e−inα = e−inaπ/2, i.e., Faφn = e−inaπ/2φn.

Any function f ∈ L2(−∞,∞) can be expanded in terms of these eigenfunctions f =
∑∞

n=0 anφn with

an =
1

√

2nn!π
√

2

∫ ∞

−∞
Hn(x)e

−x2/2f(x)dx. (8)

7
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By applying the operator Fa, we get

fa := Faf = Fa[
∞

∑

n=0

anφn] =
∞

∑

n=0

anFaφn =
∞

∑

n=0

ane
−inaπ/2φn.

Thus we have the definition of the FrFT in the form of a series, but this form is very
impractical for computational purposes.

It will be much more practical to have an integral representation. This can be obtained
by replacing the an in the series by their integral expression (8) (recall α = aπ/2):

fa(ξ) =
∞

∑

n=0

[

1
√

2nn!π
√

2

∫ ∞

−∞
φn(x)f(x)dx

]

e−inaπ/2φn(ξ)

=

∫ ∞

−∞

∞
∑

n=0

e−inaπ/2Hn(ξ)Hn(x)

2nn!
√
π

e−(x2+ξ2)/2f(x)dx

=
1√

π
√

1 − e−2iα

∫ ∞

−∞
exp

{

2xξe−iα − e−2iα(ξ2 + x2)

1 − e−2iα

}

exp

{

−ξ
2 + x2

2

}

f(x)dx

where in the last step we used Mehler’s formula ([35, p. 244] or [4, eq. (6.1.13)])

∞
∑

n=0

e−inαHn(ξ)Hn(x)

2nn!
√
π

=
exp

{

2xξe−iα−e−2iα(ξ2+x2)
1−e−2iα

}

√

π(1 − e−2iα)
.

To rewrite this expression, we observe that the following identities hold (they are easily
checked)

2xξe−iα

1 − e−2iα
= −ixξ cscα

1√
π
√

1 − e−2iα
=

e−
i
2
(π
2
α̂−α)

√

2π| sinα|
e−2iα

1 − e−2iα
+

1

2
= − i

2
cotα

where α̂ = sgn(sinα). Obviously, such relations only make sense if sinα 6= 0, i.e., if α 6∈ πZ

or equivalently a 6∈ 2Z. The branch of (sinα)1/2 we are using for sinα < 0 is the one with
0 < |α| < π. With these expressions, we obtain a more tractable integral representation of
Fa for a 6∈ 2Z viz.

fa(ξ) := (Faf)(ξ) =
e−

i
2
(π
2
α̂−α)e

i
2
ξ2 cotα

√

2π| sinα|

∫ ∞

−∞
exp

{

−i xξ
sinα

+
i

2
x2 cotα

}

f(x)dx, (9)

where α̂ = sgn(sinα) and 0 < |α| < π.
Previously we defined (Faf)(ξ) = f(ξ), if α = 0, and (F af)(ξ) = f(−ξ), if α = ±π.

That is consistent with this integral representation because for these special values, it holds
that limε→0 fa+ε = fa. Thus, with this limiting property, we can assume that the integral
representation holds on the whole interval |α| ≤ π. Clearly, when |α| > 2π, the definition is
taken modulo 2π and reduced to the interval [−π, π].

Defining the FrFT via this integral transform, we can say that the FrFT exists for f ∈ L1

(and hence in L2) or when it is a generalized function. Indeed, in that case, the integrand
in (9) is also in L1 (or L2) or is a generalized function. Thus the FrFT exists in exactly the
same conditions as in which the FT exists. Thus we have proved

8
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Theorem 3.1 Assume α = aπ/2 then the FrFT has an integral representation

fa(ξ) := (Faf)(ξ) =

∫ ∞

−∞
Ka(ξ, x)f(x)dx.

The kernel is defined as follows: For a 6∈ 2Z, then with α̂ = sgn(sinα),

Ka(ξ, x) = Cα exp

{

−i xξ
sinα

+
i

2
(x2 + ξ2) cotα

}

with Cα =
e−

i
2
(π
2
α̂−α)

√

2π| sinα|
=

√

1 − i cotα

2π
.

For a ∈ 4Z the FrFT becomes the identity, hence

K4n(ξ, x) = δ(ξ − x), n ∈ Z

and for a ∈ 2 + 4Z, it is the parity operator:

K2+4n(ξ, x) = δ(ξ + x), n ∈ Z.

If we restrict a to the range 0 < |a| < 2, then F a is a homeomorphism of L (with inverse
F−a).

The last statement is proved in [30, p. 162]. Some graphics representing the kernel are given
in Figure 2.

Note that by F b = F b−aFa, we immediately have the more general formula

fb(ξ) =

∫ ∞

−∞
fa(x)Kb−a(ξ, x)dx.

Using the above expressions and the interpretation of the FrFT as a rotation, it is directly
verified that the kernel Ka has the following properties.

Theorem 3.2 IF Ka(x, t) is the kernel of the FrFT as in Theorem 3.1, then

1. Ka(ξ, x) = Ka(x, ξ) (diagonal symmetry)

2. K−a(ξ, x) = Ka(ξ, x) (complex conjugate)

3. Ka(−ξ, x) = Ka(ξ,−x) (point symmetry)

4.
∫ ∞
−∞Ka(ξ, t)Kb(t, x)dt = Ka+b(ξ, x) (additivity)

5.
∫ ∞
−∞Ka(t, ξ)Ka(t, x)dt = δ(ξ − x) (orthogonality)

3.3 The chirp function

A chirp function (or chirp for short) is a signal that contains all frequencies in a certain
interval and sweeps through it while it progresses in time. The interval can be swept in
several ways (linear, quadratic, logarithmic,. . . ), but we shall restrict us here to the case
where the sweep is linear.

The complex exponential eiωt contains just one frequency: ω. This type of functions is
essential in Fourier analysis. In fact, they form a basis for the space of functions treated by

9
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Figure 2: Real (top) and imaginary (bottom) parts of the FrFT kernel Ka(ξ, x), x, ξ ∈ [−5, 5]
for a = 0.01, 0.5, 0.75, 1, 1.5, and 1.75. Note the highly oscillating character for a close to an
even integer.
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the FT. Indeed, the relation f(x) = 1√
2π

∫ ∞
−∞ F (ω)eiωtdt can be seen as a decomposition of

f into a (continuous) combination of the basis functions {eiωt}ω∈R.
On the other hand, if the frequencies of the signal sweeps linearly through the frequency

interval [ω0, ω1] in the time interval [t0, t1], then we should have ω = ω0 + ω1−ω0

t1−t0 (t − t0).
Thus, such a function will look like exp{i(χt + γ)t}. The parameter χ is called the sweep
rate. Now consider the FrFT kernel Ka(ξ, x), then, seen as a function of x and taking ξ as
a parameter, this is a chirp with sweep rate 1

2
cotα. So, one way of describing a FrFT is

1. multiply by a chirp
2. do an ordinary FT
3. do some scaling
4. multiply by a chirp.

See Section 6.5 for more details on the computational aspect. The inverse FrFT can be
written as f(x) =

∫ ∞
−∞ fa(ξ)ψξ(x)dξ where ψξ(x) = K−a(ξ, x) is a chirp parameterized in ξ

with sweep rate − 1
2
cotα. Thus we see that the role played by the harmonics in classical

FT, is now taken by chirps, and the latter relation is a decomposition of f(x) into a linear
combination of chirps with a fixed sweep rate determined by α. Note also that in this
expansion in chirp series, the basis functions are orthogonal since

∫ ∞

−∞
Ka(ξ, x)Ka(ξ, y)dξ = δ(x− y).

However, there is more. The chirps are in between harmonics and delta functions, which are
basic for the classical FT. Indeed, up to a rotation in the time-frequency plane, the chirps are
delta functions and harmonics. To see this, take the FrFT of a delta function δ(x−γ). That
is Fa(δ(· − γ)) = Ka(ξ, γ), which is a chirp with sweep rate 1

2
cotα. Thus, given a (linear)

chirp with sweep rate 1
2
cotα, we can by a FrFT F−a transform it into a delta function and

hence by taking the FT of the delta function, we can take the chirp by a FrFT F 1−a into an
harmonic function.

3.4 Fractional Fourier transforms of some common functions

Now that we have seen the definition and some essential properties, it is time to have a look
at some of the actual transforms of some elementary functions.

Table 1: The fractional Fourier transform of some basic functions
f(u) Fa(u)

1 δ(u− γ)
√

1−i cotα
2π

e
i
2
(u2 cotα−2uγ cscα+γ2 cotα), if a 6∈ 2Z

2 1
√

1+i tanα
2π

e−i
u2

2
tanα, if a 6∈ 2Z + 1

3 e
i
2
(χu2+2γu)

√

1+i tanα
1+χ tanα

ei
u2(χ−tan α)+2uγ sec α−γ2 tan α

2(1+χ tan α) , if a− 2
π

arctanχ 6∈ 2Z + 1

4 e−
i
2
(χu2+2γu)

√

1−i cotα
χ−i cotαe

i
2

cotα
u2(χ2

−1)+2uχγ sec α+ξ2

χ2+cot2 α e
− 1

2
csc2 αu2χ+2uγ cos α−χγ2 sin2 α

χ2+cot2 α , χ > 0

5 φl(u) e−ilαφl(u)

6 e−
u2

2 e−
u2

2

In the table given above γ, χ ∈ R, and φl(u) are the Hermite-Gauss functions. In (4),
χ > 0, is required for the convergence.

11
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Figure 3: Fa(δ(· − γ)) for a = 0.2, 0.4, 0.75, 1. On the left for γ = 0, on the right for γ = 5.
Real part: solid line, imaginary part: dashed line
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For a proof, we refer to the appendix.
For some graphics of several signals given in the table above, see Figure 4. Note that

the figure near α = 0 for the delta-function does not look much like a delta function, but
behaves rather chaotic. The reason is purely numerical. Although, we have theoretically
that a chirp can converge to a delta function, more precisely lima→0Ka(x, γ) = δ(x−γ), this
does not work well numerically because we use an approximation where terms of the form
0 · ∞ will show up in a rather chaotic way.

4 Properties of the FrFT

The previous relations imply several properties for the FrFT.

4.1 Differentiation and multiplication operations

Theorem 4.1 The FrFT satisfies the following properties.

1. conservation of symmetry: The FrFT of an even (odd) function is even (odd).

12



Preprint, December 10, 2003 13

Figure 4: FrFT (real parts) of some signals
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2. Parseval:
∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
(Faf)(ξ)(Fag)(ξ)dξ.

If f = g, this is the energy conservation property.

3. multiplication rule: (FaUmf)(ξ) = [ cosα U + sinα D]m(Faf)(ξ)

4. differentiation rule: (FaDmf)(ξ) = [− sinα U + cosα D]m(Faf)(ξ)

Proof. (outline) The first one follows directly from the integral expression. The second is
also obtained from the previous kernel properties and Fubini’s theorem.

It requires much more technical manipulations to prove the latter two rules. They are
proved by induction on m. For m = 1, the multiplication rule is obtained by differentiating
the integral representation of fa(ξ) with respect to ξ. The differentiation rule is obtained by
using integration by parts for F aDf and using the multiplication rule. �

The two properties (3) and (4) (with m = 1) can be written as

Fa

[

U
D

]

=

[

Ua
Da

]

Fa where

[

Ua
Da

]

=

[

cosα sinα
− sinα cosα

] [

U
D

]

.

13
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Thus Ua and Da correspond to multiplication and differentiation in the variable of the FrFT
domain. It are rotations of the usual U and D: (Ua,Da) = Ra(U ,D). The latter are in a
sense orthogonal operations since for a = 1, i.e., α = π/2, we recover the properties of the
FT namely multiplication in the time domain corresponds to differentiation in the frequency
domain, and differentiation in the time domain corresponds to minus the multiplication
operation in the frequency domain, which is exactly what the previous relations say for
a = 1, viz. FU = U1F = DF and FD = D1F = −UF . The latter relations are beautifully
caught in Lie-bracket relations when the theory is developed in a quantum mechanical setting
[65].

It is not difficult to derive from the previous relations the more general one:

F b−a
[

Um
a

Dm
a

]

=

[

Um
b

Dm
b

]

F b−a;

[

Ub
Db

]

=

[

cos(β − α) sin(β − α)
− sin(β − α) cos(β − α)

] [

Ua
Da

]

;

[

α
β

]

=

[

a
b

]

π/2.

Because the rotation is an orthogonal transformation, we also have D2
a+U2

a = D2+U2, so
that the Hamiltonian is rotation invariant: Ha = −1

2
(D2

a +U2
a +I) = −1

2
(D2 +U2 +I) = H.

Theorem 4.1 has some immediate consequences which we include for further reference.

Corollary 4.2 For functions f and g we shall consistently use fa = Faf and ga = Fag.
For f ∈ L and α = aπ/2 ∈ R we have the following operational rules.

1. division rule: If g(x) = (ix)−mf(x), then

e
iξ2 cot α

2 ga(ξ) = (sinα)−m
∫ ξ

−∞
e

ix2 cot α
2 fa(x)dx.

2. integration rule: If g(x) =
∫ x

c
f(t)dt, then

e−
iξ2tgα

2 ga(ξ) = secα

∫ ξ

c

e−
ix2tgα

2 fa(x)dx.

3. mixed product rule: Fa(UD)m = (UaDa)
mFa and Fa(DU)m = (DaUa)mFa while

for m = 1: FaUD = UaFaD and FaDU = DaFaU .

For a proof we refer to the appendix.

4.2 Convolution

Let us have a look at some other rules that transfer in a consistent way from the clas-
sical FT to the FrFT case. It is a very useful property of the FT that it transforms a
convolution into a product. In fact, this is the very reason why many signal processing
problems become so simple when dealt with in the frequency domain. Of course, this prop-
erty remains true when it concerns the convolution of two functions in the domain of the
FrFT Fa: if ga(xa) = fa(xa) ∗ ha(xa), (the star denotes convolution) then its FT becomes
ga+1(ξa) = fa+1(ξa)ha+1(ξa). Thus

F{F [fa(xa) ∗ ha(xa)]} = F{fa+1(xa+1)ha+1(xa+1)} = fa+2(xa+2) ∗ ha+2(xa+2).

We shall say more about convolutions in a more general context in section 6.6.

14
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4.3 Shift operation

To conclude this section, two more rules that generalize the fact that for the classical FT of
a shift in the time domain is transformed in an exponential multiplication in the frequency
domain and conversely. Therefore, these are called dual operations. In fact, the exponential
multiplication in the time domain causes a shift in the frequency domain, and in this sense,
both of them are in a sense shift operations. Thus it will not come as a surprise that the
FrFT will transform a shift in either of the two domains into an intermediate mixture of
both if a is not an integer. We have

Theorem 4.3 As before, for functions f and g we shall consistently use fa = Faf and
ga = Fag. For f ∈ L and α = aπ/2 ∈ R we have

1. shift rule: If g(x) = f(x+ b), then

ga(ξ) = eib sinα(ξ+ 1
2
b cosα)fa(ξ + b cosα).

2. exponential rule: If g(x) = eibxf(x), then

ga(ξ) = eib cosα(ξ+ 1
2
b sinα)fa(ξ + b sinα), x ∈ R.

For a proof we again refer to the appendix.

5 Relation with other transforms

There are several other time/frequency representations of a signal that are related to the
FrFT. Some of them will be discussed in this section.

5.1 Wigner distribution

Let f be a signal, then its Wigner distribution or Wigner transform Wf is defined as

(Wf)(x, ξ) =
1√
2π

∫ ∞

−∞
f(x+ u/2)f(x− u/2)e−iξudu.

Its meaning is roughly speaking one of energy distribution of the signal in the time-frequency
plane. Indeed, setting f1 = Ff , we have

∫ ∞

−∞
(Wf)(x, ξ)dξ = |f(x)|2 and

∫ ∞

−∞
(Wf)(x, ξ)dx = |f1(ξ)|2,

so that
1√
2π

∫ ∞

−∞

∫ ∞

−∞
(Wf)(x, ξ)dξdx = ‖f‖2 = ‖f1‖2,

which is the energy of the signal f .
An important property of the FrFT is the following.

15
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Theorem 5.1 The Wigner distribution of a signal and its FrFT are related by a rotation
over an angle −α:

(Wfa)(x, ξ) = R−a(Wf)(x, ξ)

where α = aπ/2, fa = Faf , and R−a represents a clockwise rotation of the variables (x, ξ)
over the angle α. Equivalently

Ra(Wfa)(x, ξ) = (Wfa)(xa, ξa) = (Wf)(x, ξ)

with (xa, ξa) = Ra(x, ξ).

The proof is tedious but straightforward: replace in the definition of (Wfa)(x, ξ) the
values of fa(x + u/2) and fa(x − u/2) by their integral representation, which leads to a
triple integral. One of these integrals gives a delta function which allows to evaluate the
second of these integrals. The remaining one can then be identified with the explicit formula
for R−a(Wf)(x, ξ). For detail see [3, p. 3087]. Looking at Figure 5, the result is in fact
obvious since it just states that before and after a rotation of the coordinate axes, the Wigner
distribution is computed in two different ways taking into account the new variables, and
that should of course give the same result.

Figure 5: Wigner distribution of a signal f and the Wigner distribution of its FrFT are
related by a rotation.

PSfrag replacements

αα

ξξ

xx

ξa ξa
xa

xa

Wf (x, ξ)

RαWfa
(x, ξ) = Wfa

(xa, ξa)

This implies for example

∫ ∞

−∞
(Wfa)(x, ξ)dξ = |fa(x)|2 and

1√
2π

∫ ∞

−∞

∫ ∞

−∞
(Wfa)(x, ξ)dxdξ = ‖f‖2.

The first relation generalizes the above expressions given for a = 0, 1, the second gives the
energy of the signal.

The Radon transform of a 2-dimensional function is the integral of this function along
a straight line through the origin. The Radon-Wigner transform is the Radon transform of
the Wigner distribution. If that line makes an angle α = aπ/2 with the x-axis, then it is
given by

∫ ∞

−∞
(Wf)(r cosα, r sinα)dr =

∫ ∞

−∞
(Wfa)(x, ξ)dξ = |fa(x)|2.

16
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Figure 6: Some examples of Wigner distributions
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5.2 The ambiguity function

The ambiguity function is closely related to the Wigner distribution. Its definition is

(Af)(x, ξ) =
1√
2π

∫ ∞

−∞
f(u+ x/2)f(u− x/2)e−iuξdu.

Thus it is like the Wigner distribution, but now the integral is over the other variable.
The ambiguity function and the Wigner distribution are related by what is essentially a
2-dimensional Fourier transform. Whereas the Wigner distribution gives an idea about
how the energy of the signal is distributed in the (x, ξ)-plane, the ambiguity function will
have a correlative interpretation. Indeed (Af)(x, 0) is the autocorrelation function of f and
(Af)(0, ξ) is the autocorrelation function of f1 = Ff . The Radon transform of the ambiguity
function is

∫ ∞

−∞
(Af)(r cosα, r sinα)dr =

∫ ∞

−∞
(Afa)(x, ξ)dξ = fa(x/2)fa(−x/2).

Just like for the Wigner distribution it also holds that

Ra(Afa)(x, ξ) = (Afa)(xa, ξa) = (Af)(x, ξ).
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5.3 Short time Fourier transform

The short time Fourier transform or windowed Fourier transform (WFT) is defined as

(Fwf)(x, ξ) =
1√
2π

∫ ∞

−∞
f(t)w(t− x)e−iξtdt

where w is a window function. It is a local transform in the sense that the window function
more or less selects an interval, centered at x to cut out some filtered information of the
signal. So it gives information that is local in the time-frequency plane domain in the sense
that we can find out which frequencies appear in the time intervals that are parameterized
by their centers x.

It can be shown that

(Fwf)(x, ξ) = e−ixξ(Fw1f1)(ξ,−x) = e−ixξ(Fw1f1)(x1, ξ1)

where w1 = Fw and f1 = Ff . Because of the asymmetric factor e−ixξ, it is more convenient
to introduce a modified WFT defined by

(F̃wf)(x, ξ) = eixξ/2(Fwf)(x, ξ).

Then we have

Theorem 5.2 The modified windowed Fourier transform satisfies

(F̃wf)(x, ξ) = (F̃wa
fa)(xa, ξa)

A proof can be found in the appendix.
For more information on windows applied in the FrFT domain see [58].

5.4 Wavelet transform

From its definition fa(ξ) =
∫

Ka(ξ, u)f(u)du, we get by setting x = ξ secα and g(x) =
fa(x/ secα)

g(x) = C(α)e−i4x
2 sin(2α)

∫ ∞

−∞
exp

[

i

2

(

x− u

tan1/2 α

)2
]

f(u)du.

C(α) is a constant that depends on α only. Although, there are some characteristics of a
wavelet transform, this can not exactly be interpreted as a genuine wavelet transform. We
do have a scaling parameter tan1/2 α and a translation by u of the basic function ψ(t) = eit

2

but since
∫ ∞
−∞ ψ(x)dx 6= 0 and it has no compact support, this is not really a wavelet.

Multiscale chirp functions were introduced in [6, 28]. A. Bultan [9] has developed a so
called chirplet decomposition which is related to wavelet package techniques. It is espe-
cially suited for the decomposition of signals that are chirps, i.e., whose Wigner distribution
corresponds to straight lines in the (x, ξ)-plane.

The idea is that a dictionary of chirplets is obtained by scaling and translating an
atom whose Wigner distribution is that of a Gaussian that has been stretched and ro-
tated. So, we take a Gaussian g̃(t) = π−1/4e−x

2/2 with Wigner distribution (W g̃)(x, ξ) =
(2/π)1/2 exp{−(x2 + ξ2)}. Next we stretch it as g(x) = s−1/2g̃(x/s) giving (Wg)(x, ξ) =
(W g̃)(x/s, sξ). Finally we rotate (Wg) to give (Wc)(x, ξ) with c = F ag. The chirplet c
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Figure 7: A discrete chirplet dictionary tiling the (x, ξ)-plane

depends on two parameters s and a and its main support in the (x, ξ)-plane can be thought
of as a stretched (by s) and rotated (by a) ellipse centered at the origin. To cover the
whole (x, ξ)-plane, we have to tile it with shifted versions of this ellipse, i.e., we need the
(Wg)(x− u, ξ − ν) corresponding to the functions c(x− u)eiνx. With these four-parameters
ρ = (s, a, u, ν) we have a redundant dictionary {cρ}. The next step is to find a discretization
of these 4 parameters such that the dictionary is complete when restricted to that lattice.
It has been shown [61] that such a system can be found for a = 0 that is indeed complete,
and the rotation does not alter this fact.

If the discrete dictionary is {cn} with cn = cρn
, then a chirplet representation of the

signal f has to be found of the form f(x) =
∑

n ancn(x). Such a discrete dictionary for a
signal with N samples has a discrete chirplet dictionary with O(N 2) elements. Therefore
a matching pursuit algorithm [27] can be adapted from wavelet analysis. The main idea is
that among all the atoms in the dictionary the one that matches best the data is retained.
This gives a first term in the chirplet expansion. The approximation residual is then again
approximated by the best chirplet from the dictionary, which gives a second term in the
expansion etc. This algorithm has a complexity of the order O(MN 2 logN) to find M terms
in the expansion. This is far too much to be practical. A faster O(MN) algorithm based on
local optimization has been published [20].

This approach somehow neglects the nice logarithmic and dyadic tiling of the plane that
made more classical wavelets so attractive. So this kind of decomposition will be most
appropriate when the signal is a composition of a number of chirplets. Such signals do exist
like the example of a signal emitted by a bat which consists of 3 nearly parallel chirps in the
(x, ξ)-plane. Other examples are found in seismic analysis. For more details we refer to [9].
An example in acoustic analysis was given in [20].

6 The linear canonical transform

As we have seen, the FrFT is essentially a rotation in the (x, ξ)-plane. So, it can be char-
acterized by a 2 × 2 rotation matrix which depends on one parameter, namely the rotation
angle. Most of what has been said can be generalized to a more general linear transform,
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Figure 8: Chirplets for different rotation angles, a = 0, 0.1, 0.5, 0.9, 1., 1.5. Real part in solid
line, imaginary part in dashed line.
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which is characterized by a general matrix M with det(M) = 1. These generalizations are
called linear canonical transforms (LCT).

6.1 Definition

Consider a 2× 2 unimodular matrix (i.e., whose determinant is 1). Such a matrix has 3 free
parameters u, v, w which we shall arrange as follows

M =

[

a b
c d

]

=

[

w
v

1
v

−v + uw
v

u
v

]

=

[

u
v

− 1
v

v + uw
v

w
v

]−1

=

[

d −b
−c a

]−1

.

The parameters can be recovered from the matrix by

u =
d

b
=

1

a

(

1

b
+ c

)

, v =
1

b
, w =

a

b
=

1

d

(

1

b
+ c

)

A typical example is the rotation matrix associated with Rα where a = d = cosα and
b = −c = sinα. Let us call this matrix Rα. The linear canonical transform FM of a function
f is an integral transform with kernel KM(ξ, x) defined by

KM(ξ, x) =

√

v

2πi
e

i
2
(uξ2−2vξx+wx2) =

1√
2πib

e
i
2b

(dξ2−2ξx+ax2)

where u, v, and w are parameters (independent of ξ and x) arranged in the matrix M as
above. Thus the transform is

fM(ξ) = (FMf)(ξ) =

∫ ∞

−∞
KM(ξ, x)f(x)dx.

6.2 Effect on Wigner distribution and ambiguity function

Note that if M is the rotation matrix Rα, then the kernel KM reduces almost to the FrFT
kernel because M = Rα implies u = w = cotα while v = cscα. Hence FRα = e−iα/2Fa. If f
denotes a signal, and fM its linear canonical transform, then the Wigner transform gives

(WfM)(ax+ bξ, cx+ dξ) = (Wf)(x, ξ). (10)

The latter equation can be directly obtained from the definition of linear canonical transform
and the definition of Wigner distribution. Thus if RM is the operator defined by RMf(x) =
f(Mx), then W = RMWFM . Note that this generalizes Theorem 5.1, since (up to a
unimodular constant factor which does not influence the Wigner distribution) FRα and Fa

are the same. Again using the coordinate transform technique of Figure 5, the result is
obvious since the result says that the Wigner distribution computed before and after a
change of variables gives the same result.

The same thing can be said about the ambiguity function: A = RMAFM .
Although M is a 2 × 2 matrix, and should be interpreted as such, we shall, purely for

typographical reasons, sometimes write M = (a, b, c, d).
The set of unimodular matrices M has a group structure, and the rotation matrices

(which correspond to the FrFT) form a subgroup (the elliptic group). This group structure
can be exploited to show for example that a LCT is a unitary operator and if C−1

m = C∗
m

has a kernel K∗
M(ξ, x) = KM(x, ξ). Also, the index additivity property of the FrFT can be

generalized to
FAFB = FC if and only if C = AB.
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6.3 Special cases

When we restrict ourselves to real matrices M , there are several interesting special cases,
the FrFT being one of them. Others are

• The Fresnel transform: This is defined by

gz(ξ) =
eiπz/l√
ilz

∫ ∞

−∞
ei(π/lz)(ξ−z)

2

f(x)dx.

This corresponds to the choice M = (1, b, 0, 1) with b = zl
2π

, because, with this M we
have gz(ξ) = eiπz/l(FMf)(ξ).

• Dilation: The operation f(x) 7→ gs(ξ) =
√
sf(sξ), can be also obtained as a LCT

because with M = (1/s, 0, 0, s) we have gs(ξ) =
√

sgn(s)(FMf)(ξ).

• Gauss-Weierstrass transform or chirp convolution: This is obtained by the choice
M = (1, b, 0, 1):

(FMf)(ξ) =
1√
2πib

∫ ∞

−∞
exp{i(x− ξ)2/2b}f(x)dx.

• Chirp (or Gaussian) multiplication: Here we take M = (1, 0, c, 1) and get

(FMf)(ξ) = exp{icξ2/2}f(ξ).

6.4 Simplified canonical transform

The LCT has been introduced in [33],[65, Chap. 9]. Some of the properties like the relation
with Wigner distribution, correlation and convolution, interpretation of the parameters etc.
were discussed in [47]. It turns out that for several applications, only the ratio a/b is im-
portant, which leaves the freedom to choose the other parameters subject to the unimodular
condition det(M) = 1. It gave rise to the definition of a simplified canonical transform [45]
which can be advantageous for computational reasons or it may be possible to use the extra
freedom to obtain a better design of the transform. Some of the properties of the usual LCT
can be lost though. For example the fact that FAFB = FC corresponds to AB = C makes
it easy to find the inverse because FAFB = I when AB = I, thus B = A−1. This will
not be true anymore for the simplified LCT, but fortunately simple formulas for the inverse
transform can still be obtained.

The eigenfunctions for the LCT are analyzed in [49]. They can take quite different forms
depending on |a+ b| being smaller, equal or larger than 2.

6.5 On the computation of the LCT

To compute the LCT, it is only in exceptional cases that the integral can be evaluated
exactly. So in most practical cases, the integral will have to be approximated numerically.
Two forms depending on different factorizations of the M matrix are interesting for the fast
computation or the LCT and thus also for the FrFT.
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The first one reflects the decomposition

[

a b
c d

]

=

[

1 0
(d− 1)/b 1

] [

1 b
0 1

] [

1 0
(a− 1)/b 1

]

(11)

which means (see section 6.3) that the computation can be reduced to a chirp multiplication,
followed by a chirp convolution, followed by a chirp multiplication. Taking into account that
the convolution can be computed in O(N logN) operations using the fast Fourier transform
(FFT), the resulting algorithm is a fast algorithm.

Another interesting decomposition is given by

[

a b
c d

]

=

[

1 0
db−1 1

] [

b 0
0 b−1

] [

0 1
−1 0

] [

1 0
b−1a 1

]

(12)

and this is to be interpreted as a chirp multiplication, followed by an ordinary Fourier
transform (which can be obtained using FFT), followed by a dilation, followed eventually by
another chirp multiplication. Again it is clear that this gives a fast way of computing the
FrFT or LCT.

In Figure 9, the effect of the LCT on a unit square is illustrated showing the different
steps when the matrix M , which is for this example M = (2, 0.5, 0, 1, 0.525), is decomposed
as in (11) or as in (12). As we can see the two methods compute quite different intermediate
results. In the example given there, it is clear that the second decomposition on the right
stretches the initial unit square much more and shifts it over larger distances compared to
first decomposition on the left. This is an indication that more severe numerical rounding
errors are to be expected with the second way of computing than with the first one.

Figure 9: The effect of a LCT on a square. Left when the matrix M is decomposed as in
(11) and right when it is decomposed as in (12).
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The straightforward implementation of these steps may be a bit naive because for example
in the FrFT case, the kernel may be highly oscillating. See for example Figure 2 in the case
of the FrFT for values of a that are close to an even integer. It is clear that those values
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of a should be avoided. Therefore it is best to evaluate the FrFT only for a in the interval
[0.5, 1.5] and to use the relation F a = FF1−a for a ∈ [0, 0.5) ∪ (1.5, 2]. A discussion in [38]
follows the approach given by the first decomposition (11).

A brief derivation is given in the appendix.

6.6 Filtering in the LCT domain

One may now set up a program of generalizing all the properties that were given in the
case of the FrFT to the LCT. Usually this does not pose a big problem and the gen-
eralization is smoothly obtained. We just pick one general approach to what could be
called canonical filtering operations. For its definition, we go back to the classical Four-
ier transform. If we want to filter a signal, then we have to compute a convolution of
the signal and the filter. However, as we know, the convolution in the x-domain corres-
ponds to a multiplication in the ξ-domain. Thus the filtering operation is characterized by
f ∗ g = F−1[(Ff)(Fg)]. The natural fractional generalization would then be to define a
fractional convolution f ∗a g = (Fa)−1[(Faf)(Fag)] and the canonical convolution would be
f ∗M g = (FM)−1[(FMf)(FMg)]. Clearly, if M = I or a = 1, the classical convolution is
recovered. This definition has been used in many papares. See for example [34] and [40,
p. 420]. Similar definitions can be given in connection with correlation instead of convolution
operations. The essential difference between convolution and correlation is a complex conjug-
ate, so that a canonical correlation can be defined as f ?M g = (FM)−1[(FMf)(FMg)∗]. One
could generalize even more and define for example an operation like FM3 [(FM1f)(FM2g)]
(see [45]).

If we consider the convolution in the x-domain and the multiplication in the ξ-domain as
being dual operations, then we can ask for the notion of dual operations in the fractional or
the canonical situation. A systematic study of dual operations has been undertaken in [24],
but we shall not go into details here.

The windowed Fourier transform can be seen as a special case. Indeed, as we have seen,
applying a window in the x-domain corresponds to applying a transformed window in the
xa-domain. So it may well be that in some fractional domain, it may be easier to design a
window that will separate different components of the signal, or that can better catch some
desired property of the signal because its spread is smaller in the transform domain [58].

Also the Hilbert transform which is defined as

1

π

∫ ∞

−∞

f(x)

x− x′
dx′ (13)

(integral in the sense of principal value) corresponds to filtering in the x domain with a filter
g(x) = 1/x.

A somewhat different approach to the definition of a canonical convolution is taken in
[1]. It is based on the fact that a classical convolution f ∗ g = f ∗0 g is an inner product of
f with a time-inverted and shifted version of g:

(f ∗0 g)(x) =
1√
2π

∫ ∞

−∞
f(x′)g(x− x′)dx′ = 〈f(·), g∗(x− ·)〉 .

If we denote a shift in the x-domain as

(T0(x
′)f)(x) = f(x− x′)
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and recalling that time-inversion is obtained by the parity operator F 2, it is clear that
g∗(x− x′) = (F2T0(x)g

∗)(x′). So f ∗0 g = 〈f,F2T0(x)g
∗〉. If we now define a canonical shift

as
TM(xM) = (FM)−1T0(xM)FM

that is, we transform the signal, shift it in the transform domain, and then transform back,
then another definition of a canonical convolution could be

(f ∗M g)(x) =
〈

f,F2TM(x)g∗
〉

.

It still has the classical convolution as a special case when M = I, but it is different from
the previous definition.

6.7 Two-dimensional transforms

We know that the one-dimensional FrFT is defined by: F a(f)(ξ) =
∫ ∞
−∞Ka(ξ, x)f(x)dx

where Ka(ξ, x) is the kernel as in Theorem 3.1. The simplest (separable) generalization of
the FrFT to two dimension is given by:

(Faf)(ξ) = (Fa,bf)(ξ, η) =

∫ ∞

−∞

∫ ∞

−∞
Ka,b(ξ, η;x, y)f(x, y)dxdy

where Ka,b(ξ, η;x, y) = Ka(ξ, x)Kb(η, y).
In the case of the two-dimensional FrFT we have to consider two angles of rotation

α = aπ/2 and β = bπ/2. If one of these angles is zero, the 2-dimensional transformation
kernel reduces to the 1-dimensional transformation kernel. The FrFT can be extended for
higher dimensions as:

(Fa1,...,anf)(ξ1, . . . , ξn) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
Ka1,...,an

(ξ1, . . . , ξn;x1, . . . , xn)f(x1, . . . , xn)dx1 . . . dxn,

or shorter

(Faf)(ξ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
Ka(ξ,x)f(x)dx,

where

Ka(ξ,x) = Ka1,...,an
(ξ1, . . . , ξn;x1, . . . , xn) = Ka1(ξ1, x1)Ka2(ξ2, x2) · · ·Kan

(ξn, xn).

As an example consider the function rect(x), defined as the indicator function for the
interval [0, 1). Figure 10 gives the magnitude of the 2-dimensional FrFT of the function
rect(x, y) = rect(x) rect(y) with ax = ay = 1.

The Wigner distribution of a 2-dimensional function f(x, y), is defined as:

Wf (x, y; ξ, η) =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(x+

u

2
, y +

v

2
)f(x− u

2
, y − v

2
)e−i(ξu+ηv)dudv

The separable 2-dimensional LCT of f(x, y), is defined as:

fM(x, y) =

∫ ∞

−∞

∫ ∞

−∞
KM(x, y;u, v)f(u, v)dudv, KM(x, y;u, v) = KMx

(x, u)KMy
(y, v)
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Figure 10: 2D function rect and the magnitude of its FrFT
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where

M =









ax 0 bx 0
0 ay 0 by
cx 0 dx 0
0 cy 0 dy









, Mx =

[

ax bx
cx dx

]

, My =

[

ay by
cy dy

]

.

When M is defined in this way, we may multiply the matrices associated with two trans-
forms and find the matrix associated with their concatenation. The Wigner distribution of
fM(x, y), is related to that of f(x, y) according to:

(WfM)(x′, y′; ξ′, η′) = (Wf)(x, y; ξ, η),









x′

y′

ξ′

η′









= M









x
y
ξ
η









. (14)

Thus we have again as in the 1-dimensional case that W = RMWCM, where as before
RMf(x; ξ) = f(x′; ξ′). The generalization to the n-dimensional case is not difficult. We
immediately give it for the LCT.

fM(ξ) = (FM)(ξ) =

∫ ∞

−∞
KM(ξ,x)dx

where KM(ξ,x) =
∏n

j=1KMj
(ξj, xj). By M we mean the square matrix

M =

[

a b
c d

]

,

where
a = diag(a1, . . . , an), b = diag(b1, . . . , bn),
c = diag(c1, . . . , cn), d = diag(d1, . . . , dn),

with

Aj =

[

aj bj
cj dj

]

, j = 1, . . . , n.

As in the 2-dimensional case, almost all the properties for the 1-dimensional LCT are inher-
ited by this separable n-dimensional LCT. For example FAFB = FC when AB = C, and
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with the n-dimensional Wigner distribution defined as

(Wf)(x, ξ) =
1

(2π)n/2

∫ ∞

−∞
f(x + u/2)f(x − u/2)e−ξ·udu

where we used the dot to denote the inner product of two vectors: ξ · u =
∑n

j=1 ξjuj, then

(WfM)(x′, ξ′) = (Wf)(x, ξ), with

[

x′

ξ′

]

= M

[

x
ξ

]

. (15)

For a non-separable LCT, the kernel is not written as a product of 1-dimensional kernels.
The non-separable FrFT has been considered in [48], but a much more systematic approach
can be found in [59]. The problem that the authors solve there is to find all metaplectic
operators. That is all operators FM such that (15) holds. The result was that it can be
defined as

FM = Cdb
−1DbFCb−1a

where the following notation is used: Cs represents a multiplication with the n-dimensional
chirp cs(x) = exp{ i

2
xT sx}. Thus

(Csf)(x) = cs(x)f(x).

Db is an n-dimensional dilation operator defined as

(Ddf)(x) =
1

√

det(b)
f(b−1x).

Note however that the n-dimensional dilation operator, considered as a special case of the
n-dimensional LCT has a matrix representation

M =

[

b−1 0
0 bT

]

.

so that the previous definition of the dilation operator can only be considered as an n-
dimensional LCT when b is a symmetric matrix, which is a restriction to be taken into
account in the previous definition of a metaplectic operator.

7 Optical systems and fractional Fourier transform

Just like Fourier analysis, the FrFT has some very close connections with optical systems.
It is possible to build an optical system such that the output of the system is (under some
ideal assumptions) exactly the Fourier transform of the input signal. For example, consider a
system like depicted in Figure 11. It consists of several thin lenses and possibly other optical
components which are not shown. The point source and the part of the system to the left of
the object serves to illuminate the object. The part to the right of the object will generate a
sequence of images. At a certain distance, one will see the inverted object. Before that, there
is a certain place where one can observe the Fourier transform of the object, and to the right
of the inverted image, one can observe an inverted Fourier transform, somewhat further an
upright object etc. This corresponds to the fact that the system acts at certain distances as
(integer) powers of the Fourier operator, so that we observe F k for k = 1, 2, 3, 4, . . . at certain
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Figure 11: Optical system

point
source

object

z

specific distances. However at the intermediate positions one may expect (and this is indeed
the case) that we get some non-integer (i.e., fractional) powers of the Fourier operator. The
places where the Fourier transform is observed are precisely those places where one would
have observed the point source if there had not been an object in between.

Normally, one has to study optics in 2-dimensional planes and analyse these as one
progresses along a z-axis. Under some ideal circumstances of monochromatic light, axial
symmetry etc., it is sufficient to study the systems in one variable only.

In general, an optical system will be characterized by a certain kernel h(x′, x) and the
input f(x) will be transformed into the output g(x) by an integral transform: g(x) =
∫

h(x′, x)f(x′)dx′. If we consider systems that consist only of thin lenses, free space, and
quadratically graded-index media, then the transfer kernel has the special form

h(x′, x) =
√
be−iπ/4 exp[iπ(ax2 − 2bxx′ + cx′

2
)]. (16)

These systems are called quadratic phase systems for obvious reasons and they are studied in
Fourier optics. This formula resembles very much the kernel of the linear canonical transform
described in Section 6. This illustrates that we do get a FrFT or a transform that is strongly
related to it for appropriate values of the parameters.

A thin lens causes a phase-only transform. The kernel is in that case

hlens(x
′, x) = δ(x− x′) exp

[

−iπx
2

λf

]

where λ is the wavelength and f the focal length of the lens.
A transform caused by free space has a kernel of the form

hspace(x
′, x) = eiπσde−iπ/4

1√
λd

exp

[

i
π(x− x′)2

λd

]

.

In this case, d is the distance of free space the light travels through, and σ = 1/λ.
Both of the previous optical components form a special case of the general transform (16).

However, the most pure form of the FrFT is realized by the quadratically-graded index
media. This is a medium where the refractive index depends quadratically on x, namely
n2(x) = n2

0[1 − (x/χ)2]. Here n0 and χ are parameters of the medium. The transfer kernel
is in this case

hqgim(x′, x) = ei2πσd
e−id/2χ√
λχ

Aα exp

[

iπ

λχ
(cotα x2 − 2 cscα xx′ + cotα x′

2

]
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with σ = 1/λ, α = d/χ and Aα =
√

1 − i cotα. It is clear that up to some scaling and a
multiplicative constant, this corresponds to a genuine FrFT with sweep rate cotα.

In general the system (16) is more general than the FrFT because it has 3 free parameters
while the FrFT has only one. However, by allowing an extra scaling factor and some extra
phase curvature parameter in the FrFT, one obtains precisely the more general linear canon-
ical transform. Thus up to a rescaling of the variable and the phase factor, any quadratic
phase system realizes a FrFT up to a constant. The interpretation as a linear canonical
transform is most interesting because we can catch the free parameters in a matrix and the
concatenation of several such optical elements corresponds to a matrix that is the product
of the corresponding composing matrices.

Analysis of the eigenfunctions of the Fourier operator or of the LCT transform will be
important to find when the optical system will produce an image that is similar to the object.
Sometimes the intensity is the only important characteristic, while the phase is unimportant.
In such cases simplified transforms may be very effective [45]. For much more details on the
optics we refer to the extensive treatment in [40].

8 Other transforms

Probably motivated by the success of the FrFT and the LCT, quite some effort has been put
in the design of fractional versions of related classical transforms.

8.1 Radial canonical transforms

It should be clear that for problems with circular symmetry, this symmetry should be taken
into account when defining the transforms. Take for example the 2-dimensional case. Instead
of Cartesian (x, y) coordinates, one should switch to polar coordinates so that, because of
the symmetry, the transform will only depend on the radial distance. For example, it is well
known that the Hankel transform appears naturally as a radial form of the (2-sided) Laplace
transform [65, sec. 8.4]. Giving directly the n-dimensional formulation, we shall switch from
the n-dimensional variables x and ξ to the scalar variables x = ‖x‖ and ξ = ‖ξ‖, and
the n-dimensional LCT will become canonical Hankel transforms [64, 60]. It is a one-sided
integral transform

∫ ∞
0
KM(ξ, x)f(x)dx with kernel

KM(ξ, x) = xn−1 e
−π

2
(n
2
+ν)

b
(xξ)1−n/2 exp

{

i

2b
(ax2 + dξ2)

}

Jn/2+ν−1

(

xξ

b

)

,

where Jν is the Bessel function of the first kind of order ν. The fractional Hankel transform
is a special case of the canonical Hankel transform when the matrix M is replaced by a
rotation matrix.

8.2 Fractional Hilbert transform

The definition of the Hilbert transform has been given before in (13). Note that the con-
volution defining the transform can be characterized by a multiplication with −i sgn(ξ) in
the Fourier domain. Since −i sgn(ξ) = e−iπ/2h(ξ) + eiπ/2h(−ξ) with h the Heaviside step
function: h(ξ) = 1 for ξ ≥ 0 and h(ξ) = 0 for ξ < 0, we can now define a fractional Hilbert
transform as

(FM)−1[(e−iφh(ξ) + eiφh(−ξ))(FMf)(ξ)],
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with M the rotation matrix M = Ra. For further reading see [68, 26, 41, 14].

8.3 Cosine, sine and Hartley transform

While in the classical Fourier transform, the integral is taken of f(x)eiξx, one shall in the
cosine, sine, and Hartley transform replace the complex exponential by cos(ξx), sin(ξx) or
cas(ξx) = cos(ξx)+sin(ξx) respectively. Since cos and sin are the real and imaginary part of
the complex exponential, one might think of defining the fractional cosine and sine transforms
by replacing the kernel in the FrFT by its real or imaginary part. However, this will not lead
to index additivity for the transforms. We could however use the general fractionalization
procedure given in (7). We just have to note that the Hermite-Gauss eigenfunctions are
also eigenfunctions of the cosine and sine transform, except that for the cosine transform,
the odd eigenfunctions will correspond to eigenvalues zero and for the sine transform, the
even eigenfunctions will correspond to eigenvalue zero. This implies that the odd part of
f will be killed by the cosine transform. So, the cosine transform will not be invertible
unless we restrict ourselves to the set of even functions. A similar observation holds for
the sine transform: it can only be invertible when we restrict the transform to the set of
odd functions. This motivates the habit to define sine and cosine transforms by one sided
integrals over R

+. See [49]. The bottom line of the whole fractionalization process is that
to obtain the good fractional forms of these operators we essentially have to replace in the
definition of the FrFT the factor eiξx in the kernel of the transform by cos(ξx), sin(ξx) or
cas(ξx) to obtain the kernel for the fractional cosine, sine or Hartley transforms respectively.
In the case of the cosine or sine transform, the restriction to even or odd functions implies
that we need only to transform half of the function, which means that the integral over
R can be replaced by two times the integral over R

+. Besides the fractional forms of these
operators there are also canonical forms for which we refer to [49]. Also here simplified forms
exist [46, 49].

8.4 Other transforms

The list of transforms that have been fractionalized is too long to be completed here. Some
examples are: Laplace, Mellin, Hadamard, Haar, Gabor, Radon, Derivative, Integral, Brag-
man, Barut-Girardello,. . . The fractionalization procedure of (7) can be used in general.
This means the following. If we have a linear operator T in a complex separable Hilbert
space with inner product 〈·, ·〉 and if there is a complete set of orthonormal eigenvectors
φn with corresponding eigenvalues λn, then any element in the space can be represented as
f =

∑∞
n=0 anφn, an = 〈f, φn〉, so that (T f) =

∑∞
n=0 anλnφn. The fractional transform can

the be defined as

(T af)(ξ) =
∞

∑

n=0

anλ
a
nφn(ξ) =

∞
∑

n=0

λan 〈f, φn〉φn(ξ) = 〈f,Ka(ξ, ·)〉 ,

where

Ka(ξ, x) =
∞

∑

n=0

λ
a

nφn(ξ)φn(x).

Of course a careful analysis will require some conditions like for example if it concerns the
Hilbert space L2

µ(I) of square integrable functions on an interval I with respect to a measure
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µ, then we need Ka(ξ, ·) to be in this space, which means that
∑∞

n=0 |λn|2a|φn(ξ)|2 <∞ for
all ξ.

In view of the general development for the construction of fractional transforms, it is clear
that the main objective is to find a set on orthonormal eigenfunctions for the transform that
one wants to “fractionalize”. There were several papers that give eigenvalues and eigenvectors
for miscellaneous transforms.

Zayed [69] has given an alternative that uses instead of the kernelKa(ξ, x) =
∑

n λ
a
nφ

∗
n(x)φn(ξ)

the kernel
Ka(ξ, x) = lim

|λ|→1−

∑

n

|λ|einαφn(ξ)∗φn(x).

Thus λan is replaced by |λ|neinα and the φn can be any (orthonormal) set of basis functions.
In this way he obtains fractional forms of the Mellin, and Hankel transforms, but also of
the Riemann-Liouville derivative and integral, and he defines a fractional transform for the
space of functions defined on the interval [−1, 1] based on Jacobi-functions which play the
role of the eigenfunctions.

To the best of our knowledge, a further generalization by taking a biorthogonal system
spanning the Hilbert space, which is very common in wavelet analysis, has not yet been
explored in this context.

9 The discrete FrFT

The purpose of this section to define a discrete FrFT (DFrFT). It is a discrete approximation
of the continuous FrFT when only a vector of a finite number of samples of the signal is
given, just like the discrete FT (DFT) is a discrete version of the ordinary continuous FT.
So we are working with vectors in C

N . Of course this is of great importance for practical
computations.

9.1 The DFT for finite signals and its eigenstructure

The DFT Ff of a vector f = [f(0), . . . , f(N − 1)]T is defined as the vector f1 = Ff = Ff
defined by

(Ff)(ν) =
1√
N

N−1
∑

n=0

f(n)e−i2πνn/N =
N−1
∑

n=0

F (ν, n)f(n), ν = 0, . . . , N − 1.

Thus the DFT is obtained by multiplying the given vector with the kernel matrix

F (ν, n) =
1√
N
W νn, ν, n = 0, . . . , N − 1, W = e−i2π/N .

The inverse is given by (F−1f1) = F ∗f1. This confirms that F is a unitary matrix (F−1 = F ∗).
Thus the matrix has unimodular eigenvalues and is diagonalizable. Since F4 is the identity
operator, F 4 = I, and therefore the eigenvalues are like in the continuous case λn = λn,
with λ = e−iπ/2, i.e., 1,−i,−1, i, each with a certain multiplicity depending on N modulo 4.
However, they are not just λn with n = 0, . . . , N − 1. There is some anomaly for even N .
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Indeed, the eigenvalues turn out to be λn for n ∈ N where N = {0, . . . , N − 1} for N odd
and N = {0, . . . , N − 2, N} for N even. Hence the table of multiplicities [31]

N 1 −i −1 i
4m m+ 1 m m m− 1

4m+ 1 m+ 1 m m m
4m+ 2 m+ 1 m m+ 1 m
4m+ 3 m+ 1 m+ 1 m+ 1 m

which tabulates the multiplicities of the eigenvalues shown on top for different values of N
modulo 4. There must also exist a set of N independent eigenvectors (the discrete versions
of the Hermite-Gauss functions). Like in the continuous case, the eigenvectors with respect
to different eigenvalues will be orthogonal, but within each of the four eigenspaces there is
some freedom to choose an orthonormal set.

Dickinson and Steiglitz [16] have found a procedure to construct a set of real orthogonal
eigenvectors for F . They are constructed from the (real and orthogonal) eigenvectors of
a real symmetric matrix H with distinct eigenvalues that commutes with F . If e is an
eigenvector of H: He = λe, then from HFe = FHe = λFe, it follows that Fe is also
an eigenvector of H for the same eigenvalue, so that by simplicity of the eigenvalues of H,
there must exist a constant β such that Fe = βe, i.e., e is also an eigenvector of F (with
eigenvalue β). Thus any eigenvector of H is also an eigenvector of F . Thus the problem is
reduced to the construction of such a matrix H and finding its eigenvectors. Such a matrix
H turns out to have the form H = D2 +U 2 where D2 is a circulant matrix whose first row is
[−2, 1, 0, . . . , 0, 1] (this is the matrix associated with the second difference operator and it is
thus the discrete analog of the second derivative D2) and U 2 = FD2F−1 is a diagonal matrix
U2 = 2diag(<(λn) − 1) (this is the discrete analog of U 2). Recall that <(λn) = cos(2π

N
n).

It is easily seen that H is real, symmetric and commutes with F . It is the discrete analog
of the Hamiltonian H (except for an additional term I, which we left out because it does
not influence the eigenvectors).

The matrix H has distinct eigenvalues, hence unique eigenvectors, for all N that are
not a multiple of 4. If N = 4m, then there is a eigenvalue −4 with multiplicity 2, but an
orthogonal system can still be constructed. Define the matrix V defined as

V =
1√
2

























√
2 0 · · · 0 0 · · · 0

0 1 1
...

. . . . . .

0 1 1
0 1 −1
... . . . . . .

0 1 −1

























or
1√
2





























√
2 0 · · · 0 0 0 · · · 0

0 1 0 1
...

. . .
... . . .

0 1 0 1
0 0 · · · 0 1 0 · · · 0
0 1 0 −1
... . . .

...
. . .

0 1 0 −1





























depending on N being even or odd. The sizes of the nontrivial square blocks are bN−1
2

c (bxc
denotes the integer part of x). We get after a similarity transform of the matrix H (note
V = V T = V −1) a decoupled matrix that splits into two blocks

V HV =

[

E 0
0 O

]
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with E and O symmetric tridiagonal matrices of size bN
2
c+ 1 and bN−1

2
c respectively. Thus

the problem is reduced to finding the eigenvectors of E and O and multiply them (after
appropriate zero padding) with V . The remaining problem is to find out which eigenvector
of H should be associated with a particular eigenvalue of F . This is defined in terms of the
number of zero crossings. This is like in the continuous case where φn corresponding to the
eigenvalue (−i)n has n zeros. In the discrete case, the nth eigenvector corresponding to (−i)n
should have n zero crossings where the eigenvector is cyclically extended and a zero crossing
corresponds to the fact that two successive components differ in sign: h(n)h(n+ 1) < 0 for
n = 0, . . . , N − 1 (with h(N) = h(0)). However, it turns out that ordering the eigenvectors
with respect to the eigenvalues they have as eigenvectors of H is precisely the ordering we
need. Note that the fact that we have now uniquely defined a set of orthogonal eigenvectors
is not in contradiction with the fact that we said earlier that there are infinitely many sets
of orthogonal eigenvectors. The condition of being even or odd actually fixes them uniquely
(up to sign change).

So now we know the eigenvalue decomposition of F : F = GΛGT with G = [g0, . . . , gN−1]
the orthogonal matrix of eigenvectors and Λ = diag(λ0, . . . , λN−1), (λn : n = 0, . . . , N −1) =
(e−inπ/2 : n ∈ N ), N as defined above.

9.2 Definition and properties of the DFrFT

The definition of the DFrFT is now exactly like in the continuous case:

Faf = F af = GΛaGTf.

As before we shall denote by an index the DFrFT of order a: fa = Faf0 or more generally
fa+b = Fbfa. Also the index variable will be denoted as na for the a-domain. Thus for
example

(Fa+bf)(na+b) =
N−1
∑

na=0

F b(nb, na)fa(na).

It should be obvious that with this similarity in definition, it also follows that almost all the
properties holding for the continuous FrFT also holds for the DFrFT. For example, all the
properties listed at the end of Section 3.1 still hold for the DFrFT. So we have e.g.

1. linearity: Fa(f + g) = Faf + Fag.

2. index additivity: Fa+b = FbFa = FaFb.

3. special cases: F1 is the ordinary DFT, F2 is the parity operator.

4. unitarity: (Fa)−1 = (Fa)∗.

5. conservation of symmetry: an even (odd) vector is transformed into an even (odd)
vector.

6. Parseval: f ∗g = f ∗
aga.
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Figure 12: Some continuous Hermite-Gauss functions φn, n = 1, 2, 3, 4, 18, 20 and the cor-
responding eigenvectors (indicated with circles) for the matrix H of size N = 26. Note that
for smaller n, the approximation is better.
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9.3 Relation between the FrFT and the DFrFT

As we have seen above, there are many properties that are transferred from the FrFT to
the DFrFT. We can ask how good the DFrFT will be an approximation of the FrFT. This
is closely related with how good the discrete versions of our Hermite-Gauss functions will
approximate the continuous ones.

9.3.1 Discrete Mathieu functions

To start with, note that from what we have seen above, it immediately that the continu-
ous Hermite-Gauss function φ, corresponding to the eigenvalue λ satisfies the differential
equation Hφ = λφ or equivalently

(D2 + U2)φ(x) = −(2λ+ 1)φ(x), (17)

with D and U the differentiation and multiplication operators as defined before.
The eigenvector g of H corresponding to the eigenvalue λ satisfies however the difference

equation
∆2g(n) + [2 cos(n2π

N
) − (λ− 2)]g(n) = 0 (18)

Where ∆ is the difference operator ∆g(n) = g(n + 1
2
) − g(n − 1

2
), and hence ∆2g(n) =

g(n + 1) − 2g(n) + g(n − 1), where the indices are taken modulo N . Recall the circulant
matrix D2 which is the kernel matrix for ∆2. Similarly U2 = F∆2F−1 gives

U2f(n) =
[

ein
2π
N − 2 + e−in

2π
N

]

f(n) = 2
[

cos(n2π
N

) − 1
]

f(n).

It is easily seen that our previously introduced matrix U 2 is the kernel matrix for U2. Thus
U is not a complex shift, but only an approximation to it because

U2f(n) = 2
(

cos(n2π
N

) − 1
)

f(n) =
(

−(2nπ
N

)2 + · · ·
)

f(n) ≈ −(2nπ
N

)2f(n).

The continuous counterpart of (18) is therefore

D2ψ(x) + 2[cos(2πx) + 1]ψ(x) = (λ+ 4)ψ(x). (19)

The periodic solutions to this equation are Mathieu functions [16]. In other words, one
may not expect that the eigenvectors have components that are samples of the continuous
Hermite-Gauss functions. However Figure 12 does show a close relationship between them.
So the question can be raised how good the eigenvectors approximate the continuous Hermite-
Gauss functions, since this is important for the numerical computation of the continuous
FrFT.

9.3.2 DFrFT by orthogonal projection

This problem has been discussed in [43]. If we go from FT to DFT, then an integral over
the whole real line is approximated by a quadrature rule over N points. Obviously this will
just be an approximation. First of all, the continuous Hermite-Gauss functions have an in-
finite support while the eigenvectors have only N components. Fortunately, the continuous
Hermite-Gauss functions decay like tne−t

2
. So that for practical purposes, they can be con-

sidered as zero outside a finite interval. However, for larger n, the decay is slower and hence
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the approximation is worse for the same interval. It turns out that a sampling frequency
T =

√

2π/N is precisely what one should use to obtain the same variance for continuous
and discrete versions of the Hermite-Gauss functions. Secondly, there is the integral that
has been replaced by a summation which is in fact a trapezoidal approximation. Both the
truncation error for the interval and the integration error of the trapezoidal rule will go to
zero when N tends to infinity. Hence it may not come as a surprise that the eigenvector in
Fgn = λngn for the DFT can be approximated by samples of the continuous Hermite-Gauss
function φn. The following theorem was shown in [43].

Theorem 9.1 Let φn be the continuous Hermite-Gauss function and set T =
√

2π/N .
Define

φ̃n(k) =

{

φn(kT ), for 0 ≤ k ≤ bN−1
2

c
φn((k −N)T ), for bN−1

2
c + 1 ≤ k ≤ N − 1,

then it holds that for N large F φ̃n ≈ λnφ̃n, where F is the DFT kernel matrix.

That is why in [43] another DFrFT algorithm is proposed.

1. construct the sample vectors φ̃n as in the previous theorem

2. construct the eigenvectors gn of H as in the previous paragraph

3. for k = 0, 1, 2, 3, project the vectors φ̃4m+k, k = 0, 1, . . . onto the kth eigenspace

4. re-orthogonalize the projected vectors within each eigenspace

The orthogonalization across eigenspaces is not necessary because that orthogonality is auto-
matic. One could also do the re-orthogonalization while at the same time minimizing the
distance from the original φ̃n vectors. This procedure requires a singular value decomposi-
tion, but for n close to N − 1 the results are then better than without the projection.

9.3.3 Higher order approximants

Another refinement that could be interesting when it is the intention to approximate the
FrFT accurately is to use better approximations for D2 and U2. So if D̃2 is a matrix kernel
corresponding to a higher order approximation ∆̃2 for D2 and if we set Ũ2 = FD̃2F−1,
then the same analysis as the one done in the last two paragraphs goes true, but better
approximations of the continuous Hermite-Gauss functions are obtained. For more details
see [13, 40]. An investigation of the approximating properties has been given in [7, 8].

9.4 Other definitions of the (D)FrFT

Since there are many possible definitions of the FrFT possible, many of which are equival-
ent, there is also a variety of possible definitions of the DFrFT which may or may not be
equivalent.

An older definition given in [57] is based on the fact that there exist certain expressions
pi(a) such that

Fa =
3

∑

k=0

pk(a)Fk, pk(a) =
1

4

1 − ei2πa

1 − ei
π
2
(a−k) . (20)
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This is known to be different form the definition given before. Because there are some
drawbacks to this definition (e.g., lack of index aditivity), it is somewhat placed on a side
track. But when using the definition introduced before, there are still many possibilities. In
fact, depending on the choice of the eigenvectors and the order of the eigenvalues, there is a
multitude of possible definitions for the FrFT and these may not always be equivalent.

A unifying framework has been given recently [12] which takes care of these two ambi-
guities in the definition (7):

1. the eigenvalues can be reordered, and the branch of the power λa is not fixed
2. the orthogonal basis φn is not unique.

So the unifying definition becomes

F = T ∗
ψ SaµTψ,

where µ = (µn = e−i
π
2
(n+4qn) : n = 0, 1, . . .), with qn ∈ Z an arbitrary sequence and

ψ4n+k =
∞

∑

m=0

α4m+k,4n+kφ4m+k,

i.e.,
[ψ0, ψ1, ψ2, . . .] = [φ0, φ1, φ2, . . .]A, A = [αm,n]

∞
0 .

The sequence γn = n+4qn is called the generating sequence and the double sequence {αm,n}
is called a perturbing sequence.

The choice of the generating sequence with qn = 0 and the choice of the standard basis φn
leads to the definition used before, while for qn = bn/4c, we get the definition (20) whatever
the basis is. We shall not go into the details here.

Of course the above alternatives can be adapted to the DFrFT case. Because of the am-
biguity in the choice of the eigenvectors there are many different approaches to the definition
of the DFrFT. To simulate the approximation of the Hermite-Gauss functions, sometimes
one starts from sampled versions of these eigenfunctions and uses these vectors to construct
eigenvectors. The approach of [43] that we mentioned before is an example of this strategy.
For a survey of different techniques to define the DFrFT see [44] where also closed form
solutions for the eigenvectors are given. In [18] eigenvectors are constructed having certain
symmetry properties. And probably other definitions will show up in the future.

For the discrete versions of the cosine, sine and Hartley transforms, we note already in
the classical case of the DCT or DST, there are eight different possibilities. The DCT-I and
DST-I have besides the eigenvalue 0, only eigenvalues ±1. The DCT and DST eigenvectors
can be obtained as approximately the first half on the entries of a DFT eigenvector for
a DFT matrix that has approximately twice the size of the given vector (the adjective
“approximately” refers to the fact that it depends on N being even or odd). In fact, this
property is often used in opposite direction, and the DFrFT is computed by combining a
DFrCT and a DFrST of the given vector [51]. A similar technique can be used for DCT-IV
and DST-IV. See [62]. In fact all the transformations of type I, IV, V, VIII will have similar
difficulties because ±1 and 0 are the only (multiple) eigenvalues that will be appear. For
transforms of type II, III, VI and VII, the situation is different. The eigenvalues ±1 will
be simple (if they appear at all), and all the other eigenvalues appear in complex conjugate
pairs. This is a simpler situation in theory because then all the eigenvectors will be uniquely
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defined, and there is no ambiguity in the definition anymore, except maybe for the choice of
the branch in the computation of λan. On the other hand, the computation will be harder,
because the problem will be less structured. See [11].

Several other papers are dealing with discrete transforms: discrete sine and cosine trans-
forms and thus also Hartley transforms [42, 10] discrete Hadamard transform [50], discrete
Fourier-Kravchuk transform [5], etc. The domain of discrete LCT seems to be largely unex-
plored, except for the closed form approach given in [44].

Also the effect of the discrete transforms on the Wigner distribution is still unclear. Even
the definition of a discrete Wigner distribution is not completely settled. Some references
[36, 37, 52, 53, 54, 56, 55].

10 Applications of the FrFT

The FrFT has many applications in signal processing (especially optics). It is of course
impossible to cover all of them, we just give a selection.

10.1 Filtering in the fractional Fourier domain

In some signal processing applications we have to identify a number of chirps that are mixed
up in one signal, or a certain signal may be corrupted by chirps that we want to eliminate.
Here we describe an algorithm to filter out a chirp with sweep rate, α.

1. Given a signal f(t) plus chirp function with sweep rate α
2. calculate the Fa transform
3. multiply by a stop band filter
4. apply the inverse FrFT F−a

We recall that the FrFT maps a chirp function (signal), from the a = 0-domain to a delta
function in the a-domain if a corresponds exactly to the sweep rate of the chirp. By the
stop band filters we remove the delta function as well as possible, so that step 4 brings the
filtered signal back to the original domain. A graphical example of this algorithm is given
in Figure 13, where the chirp function is given by: 0.1 exp{i(t2/10 − 2t)} and the signal
is a Gaussian exp{−(t − 30)2/20}, with a time slot (0, 40) and a sampling frequency 100
Hz. Figure 14 gives the Wigner distributions that correspond to the previous pictures. It is
seen that the first FrFT rotates the distribution in such a way that the projection onto the
horizontal axis (the a-domain) separates the signal from the chirp (top right). The chirp can
now be removed (bottom left) and after back transformation (bottom right), only the signal
remains.

If the noise is a real chirp like 0.2 cos(t2/10− 2t), then we have to filter in the a and the
−a domain. Indeed, the cosine consists of the sum of two complex chirps: one to be filtered
out in the a-domain, the other one in the −a domain. This is illustrated in Figure 15.

Of course this idea can be extended, and by several FrFT’s and corresponding deletion
of a part of the measured signal, one can isolate a signal that has a Wigner distribution in
a convex polygon of the time-frequency plane. This is illustrated in Figure 17
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Figure 13: Filtering of a signal. The signal is a Gaussian: exp(−(t− 30)2/20) corrupted by
a chirp: 0.1 exp(i(t2/10 − 2t)). All figures contain absolute values.
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10.2 Signal recovery

Assume that a signal f(x) is to be recovered from observations g(x) which are given by

g(x) =

∫

D(x, x′)f(x′)dx′ + n(x)

where D(x, x′) is a distortion kernel and n(x) is a noise signal. The idea is to apply the
technique that we described before for the removal of a chirp component: First rotate (F a),
then multiply with a filter function h (e.g. the rect function to isolate a particular part)
and then back-rotate (F−a), so that the filtering operation becomes F−aMhFa where Mh

represents the multiplication with h. For example an ideal classical bandpass filter uses a = 1
and a rect function for h. Whatever the rotation F a is, the optimal multiplicative filtering
function can be found from the autocorrelation function for f and n, which we assume to be
known. This is based on classical Wiener filter theory. The remaining problem is to find the
optimal rotation to be inserted, i.e., to find an optimal a. This is done by computing the
filtered signal for several a-values and taking the one that gives the minimal error for the
data given. Several variations are possible e.g., by doing a sequence of such transformations
(like we did in the example for the real chirp removal) or we can do them in parallel and
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Figure 14: Filtering of a signal, Wigner distributions. The signal is a Gaussian: exp(−(t−
30)2/20) corrupted by a chirp: 0.1 exp(i(t2/10 − 2t)).
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recombine them afterwards. For more details we refer to [25, 40] and the many references
they contain.

10.3 Signal classification

The convolution of two signals f and g is defined as

(f ∗ g)(x) =

∫ ∞

−∞
f(t)g(t− x)dt.

The cross correlation of these signals is the convolution of f(x) and g̃(x) = g(−x) = (F 2g)(x):

(f ? g)(x) =

∫ ∞

−∞
f(t)g(x− t)dt.

Therefore F(f ∗ g) = (Ff)(Fg) and F(f ? g) = (Ff)(Fg). For the case that f = g, f ? f is
called the autocorrelation function and F(f ? f) = |(Ff)|2.

Thus, the autocorrelation function of a signal being the convolution of the signal with
the complex conjugate of a shifted and x-inverted version of itself, it is obvious that the
unshifted version will give a peak in the autocorrelation function at the origin.
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Figure 15: Filtering of the signal. The signal is a Gaussian: exp(−(t− 30)2/20), the noise is
a real chirp: 0.2 cos((t2/2 − 2t)) All figures contain absolute values.
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To see if a signal f , matches another signal g, we compute again the correlation h = f ?g
and the signal f will more-or-less match the signal g if there is a distinct peak in the function
h. This makes it possible to recognize a certain signal or image, when it matches a certain
reference signal or image. The correlation operator is known to be shift invariant: if either
f or g is shifted, then the correlation will be shifted over the same amount. Thus the
signal will still be recognized if it is shifted. Thus shift invariance can be an advantage,
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Figure 16: Wigner distributions corresponding to Figure 15
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but it can also be a disadvantage if one wants the detection to be local. In that case the
fractional correlation can be useful because the parameter a will be a parameter to control
the shift invariance. This motivates the definition of a fractional convolution and a fractional
correlation operation.

A simple generalization of the convolution is the fractional convolution defined as f ∗ag =
F−a[(Faf)(Fag)] and the fractional correlation is defined as f ?a g = F−a[(Faf)(Fag)]. For
more details on fractional convolution and fractional correlation see [1].

As we mentioned above, the case a = 1 gives a shift invariant correlation. There will be
a peak, giving a certain maximal value, and when the signal is shifted, we shall get the same
peak, with the same magnitude at a shifted position. However, the fractional correlation will
not be shift invariant in general. There will still be a shift of the peak corresponding to the
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Figure 17: Filtering out noise by multiple masking in 3 FrFT domains. Do 3 FrFT F a with
a-domain orthogonal to the directions 1, 2 and 3 and rmove everything that is at one side
of the dashed line indicated by the arrow.
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shift of one of the signals, but the peak will also be fading out; the peak height will decrease
and its variance will increase. Thus matching will only be recognized when the signals are
unshifted or only slightly shifted. This is in fact a continuous process: no fade out for a an
odd integer and infinite fade out for a an even integer.

We can even make this process adaptive. For example to match a fingerprint with an
image from a database, we can imagine that the central part of the print will be precise,
so that we want a good match, with only a bit of shift invariance (a = 0.8 say) while at
the borders of the image, the print may be corrupted by a lot of distortions, so that there
shift invariance is much more appropriate (so that we may take there a = 1). Note that in
an image we can allow a different tolerance in shift invariance for the two directions. For
example if one wants to recognize letters on a single line, but not the ones on the previous
or the next lines. See [40].

In [1], it is also shown how the fractional autocorrelation function can be used to analyse
a noise corrupted signal composed of several chirps represented in the (x, ξ)-plane as straight
lines through the origin. Instead of computing a Radon transform of the Wigner distribution
or the ambiguity function, one can more efficiently compute a fractional convolution or
autocorrelation function in several directions. This will define a function of the direction
that will show a clear peak when the direction coincides with the direction of one of the
chirps in the signal.

10.4 Multiplexing

The chirplet application that we mentioned before shows that they provide some special
tiling of the (x, ξ)-plane. If a complex signal, or several signals from several users, has to
be transmitted over a communication channel, then there will be a limitation in time and
frequency, and the messages have to be transmitted within this window in the (x, ξ)-plane.
Multiplexing is a method by which that window is tiled and messages are assigned to each of
these tiles. For example in TDMA (time division multiple access), the window is subdivided
in vertical stripes, which means that each message gets the whole bandwidth for a certain
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amount of time. In FDMA (frequency division multiple access), the window is subdivided
in horizontal stripes, so that each message has part of the bandwidth available during the
whole time. Of course the window can be tiled in other ways like the wavelet tiling or the
chirplet tiling and each message has such a tile available for transmission. Of course the
basis functions should be orthogonal to each other so that their energy in the time-frequency
plane is well separated to avoid interference of the different messages. The chirplet tiling
can be appropriate for signals whose energy distribution has a well defined orientation in the
time-frequency plane.

Another, similar idea is used in [29]. In today’s wireless communication by mobile phones,
the channel frequency response can be rapidly time varying, in which case the Doppler spread
may not be neglected and cause inter-channel interference. Choosing chirp carriers instead
of time or frequency modulation can overcome this problem.

10.5 Compression

The idea is that the extra degree of freedom given by the FrFT as compered to the classical
FT can be used to obtain a representation of the signal in the time-frequency plane that is
easier to compress. A trivial example is a chirp function which has not a simple compact
representation neither in the time nor in the frequency domain. With an appropriate FrFT,
it becomes a delta function which can be extremely easily represented. The problem is of
course to find the most appropriate FrFT for this purpose. See [66]. With the current state
of the art, this technique does not seem to be competitive with other compression techniques.

10.6 Encryption

For the encryption of an image, one may multiply the image with a random phase, then
apply a 2-dimensional FrFT. Only the intensity of the result is stored. When the same set
of operations is repeated with a different phase and a different FrfT, then the intensity and
the phase of the original image can be recovered by a recursive procedure [21]. The extra
degree of freedom on the FrFTs makes it more difficult to break the encrypted image.

10.7 Digital watermarking

To authenticate an image, a watermark is embedded in the signal. It should be difficult to
detect for an outsider and it should not disturb the image visually. In [17] the following
procedure is proposed. First perform a 2-dimensional FrFT on the image. Then sort the
resulting coefficients and add some watermark key to a subsequence of the coefficients. That
should be not the largest coefficients, in order not to disturb the image, but also not to the
smallest ones, because these could be drowned in noise and filtered out by a noise filter.

10.8 Blind source separation

The received signal is a linear combination of several uncorrelated source signals that have
to be detected. Classically these mixing coefficients are obtained from a weighted correlation
matrix of the mixed signal. In [22] it is proposed to choose these weights or window functions
in appropriate FrFT domains where cross terms may be less apparent.
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10.9 Tomography

Besides optical systems, there are strong roots for fractional transforms in quantum mechan-
ics. This will play a role in tomography. In this case, a plane wave is scattered by an object,
the scattered response is measured, and the problem is to identify the object from that.
When the wavelength is much smaller than the object (like X-rays in medical applications),
a geometrical model can be used as is done in CAT (computed axial tomography). However
if it concerns ultra sound waves, then the wavelength may become af the same size as the
object and quantum mechanical issues will play a role. This is called diffraction tomography.
Here the FrFT can come in as the working horse for the analysis of the problem. See [19].

11 Conclusion

Now that the basic ideas have appeared in the literature, more applied researchers start to
exploit the applicability of the FrFT in several type of applications. This route and the
algorithmic an computational details are yet to be explored more deeply. In some cases we
have indicated where some theoretical areas are still wide open.

We have deliberately restricted ourselves to the operators and applications that are most
often used in signal processing. The zoological garden of fractional transforms is much larger
that what we have treated here. We just mention the wide field of fractional calculus which
is based on fractional forms of the derivative and the integral.

We hope that with this survey we have interested some of the readers to have a closer
look at the literature of fractional transforms. The younger ones may find a gold mine of
beautiful results to be discovered, and for those who do not want to change a domain chosen,
we hope that it has given an impression of what is going on in this quickly growing field.

Appendix A: Some of the proofs

A.1 Proof of the properties in Table 1 of Section 3.4

(1) This proof is trivial, using the integral representation and the property of the delta
function.

(2) This follows from the previous result and the fact that F(δ(·)) = 1:

Fa(1) = Fa(F(δ(·))) = Fa+1(δ(·)).

Hence using (1) for a replaced by a+ 1 and γ = 0 we immediately get the result.
(3) For this we need some trigonometric identities and the fact that

1√
2π

∫ ∞

−∞
e

i
2
[(χ+cotα)x2+(γ−ξ cscα)2x]dx =

e
iπ
4√

χ+ cotα
e−

i
2

(γ−ξ csc α)2

χ+cot α

(see [40, p. 57]). It then easily follows that

Fa(e
i
2
(χx2+2γx))(ξ) =

√

1 − i cotα

2π

∫ ∞

−∞
e

i
2
(ξ2 cotα−2ξx cscα+x2 cotα)e

i
2
(χx2+2γx)dx

=
√

1 − i cotαe
i
2
(ξ2 cotα) 1√

2π

∫ ∞

−∞
e

i
2
[(χ+cotα)x2+(γ−ξ cscα)2x]dx
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=

√

1 + i tanα

1 + χ tanα
e

i
2

(

ξ2(χ−tan α)+2γξ sec α−γ2 tan α

1+χ tan α

)

(4) Again this can be used using trigonometric identities and the relation

1√
2π

∫ ∞

−∞
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i
2
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e−i
π
4√

iχ+ cotα
e

i
2

(

(ξ−u csc α)2

χ+cot α

)

(see [40, p. 57]).

Fa(e−
1
2
(χx2+2γx)) =

√

1 − i cotα

2π

∫ ∞

−∞
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i
2
(−ξ2 cotα+2ξx cscα−x2 cotα)e

i
2
(iχx2+2iγx)dx

=
√

1 − i cotαe−
i
2
(−ξ2 cotα) 1√

2π
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−∞
e−

i
2
[−(iχ+cotα)x2+(−iγ+ξ cscα)2x]dx
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√

1 − i cotα

χ− i cotα
e
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2
ξ2 cotα

(χ2
−1)+2ξχγ sec α+γ2

χ2+cot2 α e
− 1

2
csc2 α ξ2χ+2ξγ cos α−χγ2 sin2 α

χ2+cot2 α

(5) and (6) are trivial.

A.2 Proof of Corollary 4.2

(1) We give the proof for m = 1. For m > 1 the proof is by induction. Because
f(x) = ixg(x), f = Ug and thus

fa = FaUg = Uaga = [cosα U + sinα D]ga.

Thus
x cosα ga(x) + sinα g′a(x) = ifa(x).

Solution of this differential equation for ga gives the desired result.
(2) Its proof is as before. Because Dg = f , we get after the FrFT

fa = Faf = FaDg = DaFag = [− sinα U + cosα D]ga.

Hence
−i sinα ga(x) + cosα g′a(x) = fa(x).

Solving this differential equation gives the result.
(3) This is an immediate consequence of Theorem 4.1 (3-4).

A.3 Proof of Theorem 4.3

(1) This is by a change of variables x′ = x+ b in the definition of the FrFT.
(2) This is seen by taking the FT of the previous rule. A shift transforms in an exponential

multiplication, giving the left-hand side. On the other hand, taking the F transform of the
Fa transform corresponds to taking the F a+1 transform, hence we replace α in the previous
line by α + π/2, which gives the right-hand side.
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A.4 Proof of theorem 5.2

First we plug in the inversion formula for the FrFT on the defining equation for the modified
WFT, then we get

(F̃wf)(x, ξ) =
eixξ/2√

2π

∫ ∞

−∞

∫ ∞

−∞
fa(z)Ka(z, t)w(t− x)e−iξtdt dz.

Because
∫ ∞

−∞
Ka(z, t)w(t− x)eiξtdt = wa(−z + x cosα + ξ sinα)eA,

with A = −i ξ2−x2

2
sinα cosα− i(x sinα− ξ cosα) + ixξ sin2 α, putting xa = x cosα+ ξ sinα

and ξa = −x sinα + ξ cosα, it is easily verified that

eixξ/2eA = e−izveixaξa/2.

Thus

(F̃wf)(x, ξ) =
eixaξa/2

√
2π

∫ ∞

−∞
fa(z)wz(xa − z)e−iξazdz.

This proves the result.

A.5 Proof of the discretization of the FrFT in Section 6.5

If we assume that the signal f is band limited to the interval [−B,B], so that for a in the
neighborhood, say 0.5 ≤ |a| ≤ 1.5, then also h(x) = ei

cot α
2
x2
f(x) can be restricted to the

interval [−B,B] and, by the sampling theorem, we can interpolate the function h(x) by

h̃(x) =
N−1
∑

l=−N
h

(

l

2B

)

sinc

[

2B

(

x− l

2B

)]

.

We have a finite sum with N = B2 because we assumed that h is bandlimited to [−B,B].
We replace in the integral of

fa(ξ) = Cαe
i
2
ξ2 cotα

∫ ∞

−∞
exp{−ixξ cscα} h(x)dx

the function h(x) by the interpolant h̃(x). This leads to

fa(ξ) ≈ Cαe
i
2
ξ2 cotα

N−1
∑
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h

(

l

2B

)
∫ ∞

−∞
exp{−iξx cscα}sinc

[

2B

(

x− l

2B

)]

dx.

The latter integral is 1
2B

exp{−iξ cscα(l/2B)} rect (x cscα/2B) with the rect(·) in this ex-
pression equal to 1 in [−B,B]. If we plug this in the relation for fa(ξ) we get after rearrange-
ment

fa

(

k

2B

)

≈ Cα
2B

c

(
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2B

) N−1
∑

l=−N
r

(

k − l
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s

(
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,
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with a chirp c(x) and two functions r(x) and s(x) defined as

c(x) = exp

{

i
cotα− cscα

2

(

k

2B

)2
}

r(x) = exp
{

i
cscα

2
x2

}

s(x) = exp

{

i
cotα− cscα

2
x2

}

f(x).

Thus we have to compute a convolution of the s and r vectors, which has an O(N logN)
complexity, followed by a chirp multiplication. If a is not in the range 0.5 ≤ |a| ≤ 1.5, we
have to apply a trick like Fa = Fa+1F−1, where the extra FT needs another O(N logN)
operations.
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